Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Biol. Res ; 39(1): 45-57, 2006. ilus
Article in English | LILACS | ID: lil-430697

ABSTRACT

This review attempts to summarize and clarify our basic knowledge as to the various factors that potentially influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn). The studies describe the interrelationship of the different systems in the body that regulate Mn homeostasis by characterizing specific, biological components involved in its systemic and cellular uptake and its elimination from the body. A syndrome known as manganism occurs when individuals are exposed chronically to high levels of Mn, consisting of reduced response speed, intellectual deficits, mood changes, and compulsive behaviors in the initial stages of the disorder to more prominent and irreversible extrapyramidal dysfunction resembling Parkinson's disease upon protracted exposure. Mn intoxication is most often associated with occupations in which abnormally high atmospheric concentrations prevail, such as in welding and mining. There are three potentially important routes by which Mn in inspired air can gain access the body to: 1) direct uptake into the CNS via uptake into the olfactory or trigeminal presynaptic nerve endings located in the nasal mucosa and the subsequent retrograde axonal transport directly into the CNS; 2) transport across the pulmonary epithelial lining and its subsequent deposition into lymph or blood; and/or 3) mucocilliary elevator clearance from the lung and the subsequent ingestion of the metal in the gastrointestinal tract. Each of these processes and their overall contribution to the uptake of Mn in the body is discussed in this review as well as a description of the various mechanisms that have been proposed for the transport of Mn across the blood-brain barrier which include both a transferrin-dependent and a transferrin-independent process that may involve store-operated Ca channels.


Subject(s)
Humans , Environmental Exposure , Homeostasis/physiology , Manganese/pharmacokinetics , Biological Transport , Manganese/toxicity , Occupational Diseases/chemically induced , Parkinson Disease, Secondary/chemically induced , Risk Assessment , Tissue Distribution
2.
Biol. Res ; 39(1): 79-85, 2006. ilus, tab
Article in English | LILACS | ID: lil-430700

ABSTRACT

DMT1 _ Divalent Metal (Ion) Transporter 1 or SLC11A2/DCT1/Nramp2 _ transports Fe2+ into the duodenum and out of the endosome during the transferrin cycle. DMT1 also is important in non-transferrin bound iron uptake. It plays similar roles in Mn2+ trafficking. Voltage clamping showed that six other metals evoked currents, but it is unclear if these metals are substrates for DMT1. This report summarizes progress on which metals DMT1 transports, focusing on results from the authors' labs. We recently cloned 1A/+IRE and 2/-IRE DMT1 isoforms to generate HEK293 cell lines that express them in a tetracycline-inducible fashion, then compared induced expression to uninduced expression and to endogenous DMT1 expression. Induced expression increases about 50x over endogenous expression and about 10x over uninduced levels. Fe2+, Mn2+, Ni2+ and Cu1+ or Cu2+ are transported. We also explored competition between metal ions using this system because incorporation essentially represents DMT1 transport and find this order for transport affinity: Mn>?Cd>?Fe>Pb Co Ni>Zn. The effects of decreased DMT1 also could be examined. The Belgrade rat has diminished DMT1 function and thus provides ways of testing. A series of DNA constructs that generate siRNAs specific for DMT1 or certain DMT1 isoforms yield another way to test DMT1-based transport.


Subject(s)
Animals , Humans , Rats , Cation Transport Proteins/metabolism , Metals/metabolism , RNA, Small Interfering , Biological Transport , Cation Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL